skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available June 11, 2026
  3. Photographer, curator, and former director of photography at the Museum of Modern Art (MoMA), John Szarkowski remarked in *William Eggleston's Guide*, "While editing directly from life, photographers have found it too difficult to see simultaneously both the blue and the sky." Szarkowski insightfully revealed a notable gap between general and aesthetic visual understanding: while the former emphasizes identifying factual elements in an image (the sky), the latter transcends mere object identification, viewing it instead as an aesthetic component--a pure expanse of blue, valued purely as a color block in visual aesthetics. Such distinctions between general visual understanding (detection, localization, etc.) and aesthetic perception (color, lighting, composition, etc.) pose a significant challenge for existing Multimodal Large Language Models (MLLMs) in comprehending image aesthetics, which is increasingly needed in real-world applications, from image recommendation and enhancement to generation. To fundamentally advance the aesthetic understanding of MLLMs, we introduce a novel dataset, PhotoCritique, derived from extensive discussions among professional photographers and enthusiasts, distinguished by its large scale, expertise, and diversity. Additionally, we propose a new model, PhotoEye, an MLLM featuring a language-guided multi-view vision fusion mechanism for understanding image aesthetics from multiple perspectives. Finally, we introduce PhotoBench, a comprehensive and professional benchmark for aesthetic visual understanding. Our model demonstrates significant advantages over both open-source and commercial models on existing benchmarks and PhotoBench. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. We have investigated the electrical transport properties of nanodevices fabricated from exfoliated flakes of two-dimensional metallic ferromagnets Fe3GeTe2 (FGT) and Fe5Ge2Te2 (FG2T) down to below three layers in thickness. The per-layer anomalous Hall conductivity even in thick FGT and FG2T devices is found to be much smaller than ∼e2h, the approximate value calculated for thick undoped crystals. Moreover, we obtain a power-law scaling relation between the per-layer anomalous Hall and per-layer longitudinal conductivities with an exponent close to 1.6, which agrees with the universal value for poor ferromagnetic conductors. Both FGT and FG2T devices show clear layer-dependent Curie temperatures and layer-dependent perpendicular magnetic anisotropy, with FG2T dominating the former and FGT dominating the latter for all thicknesses. Despite their declining trend as the device thickness decreases, both Curie temperature and magnetic anisotropy retain a significant fraction of their bulk values (>60% and >80% of the bulk values, respectively, even in the thinnest FG2T device), indicating attractive potential for practical applications. 
    more » « less